
 

1 Getting Started 

To start, we’ll create a basic project that demonstrates the features of Alice and 

explains the interface. It will show how to create a scene and make characters move. 

The ‘story’ is that of an alien (the ‘alien’ object) on the moon who is startled by 

the alien-like robot (the ‘alienRobot’ object) and runs away from it. 

1. Open ‘Alice 3’ and wait until the ‘Select Project’ screen appears (on thefirst run, 

it may take a few moments). 

Templates provide a basic scene pre-made. They contain a ‘ground’ (e.g. 
the moon surface) and an ‘atmosphere’ colour (e.g. black). Both of these 
options can be changed later in the scene designer. 

2. Select the ‘MOON’ template and click ‘OK’. A new window will appear,like the 

one in Figure 1, showing the code view for your animation. 

 

Figure 1: The code view of Alice 3 



1 

3. Now, to start laying out your scene, click the view switcher button 

(‘SetupScene’) to switch to the scene view. 

 

Figure 2: The scene view of Alice 3 

4. In the library palette, select ‘Biped classes’ and click on the ‘new Alien()’icon, 

then press OK on the dialog that will open. This will place an alien character at 

the center of your scene with the name ‘alien’. 

5. Now click on the arrow next to the ‘all classes’ button to return to theopening 

menu. 

 

Figure 3: Click to return to the full library palette 

6. From the library, choose ‘Quadraped classes’ and then click on ‘new 

AlienRobot()’. In the dialog that appears, select ‘OK’ to use the default name 

(‘alienRobot’) and configuration. 



2 

7. With the ‘alienRobot’ character selected, change its x-position to 5.0 andthen 

press ENTER (if the text goes gray, the change has not been applied - reselect 

the field and press ENTER). This will move the character to the left of the 

camera. 

 

Figure 4: The properties of a character; note the change in the positioning 

Perhaps counterintuitively, the positioning is from the character’s 
perspective, rather than the camera’s position. Therefore, a positive shift 
in the x-axis will move an object left and a negative shift will move it right. 
This also applies when talking about turning the character the ‘left’ and 
‘right’ are relative to the character, not the camera. 

8. Switch back to the code view by selecting the view switching button 

(‘EditCode’). 

 

Figure 5: The ‘Object Selector’ drop down, with ‘this.camera’ selected 

9. From the ‘Object Selector’ drop down, select ‘this.camera’ and drag 

a‘moveAndOrientToAGoodVantagePointOf’ procedure to the code area inside 

the ‘do in this order’ block. In the menu that appears, select the ‘this.alien’ 

object to target the camera on. 

 



3 

Figure 6: The ‘moveAndOrientToAGoodVantagePointOf’ procedure 

1.1 Making the alien see the robot 

10. From the ‘Object Selector’ drop down, select ‘this.alien’ and drag a ‘turnToFace’ 

procedure to the code area underneath the 

‘moveAndOrientToAGoodVantagePointOf’. In the menu that appears, select 

the ‘this.alienRobot’ object to turn towards. 

11. Add a ‘think’ procedure for ‘this.alien’ to the code area and select 

‘CustomTextString’ in the pop-up menu. In the textbox, enter ‘Oh no...’ and 

press ‘OK’. Click on ‘add detail’ and set the duration to 0.25 seconds. 

12. Add a ‘delay’ procedure for ‘this.alien’ to the code area and set the duration to 

0.25 seconds. 

13. Add a ‘turn’ procedure for ‘this.alien’ to the code area and set the directionto 

‘LEFT’ and amount to 0.5 rotations. 

 

Figure 7: The code so far 

At this stage, the code should look like that in Figure 7. Remember to save 
your work regularly (File > Save). You can also use the ‘Run’ button to see 
what the animation is doing already. 

1.2 Being chased away 

14. From the statement library on the bottom of the screen, drag a ‘do together’ 

block into the code area underneath the ‘turn’ procedure. 

Up to this point, all of the procedures have been inside a ‘do in order’ block 
(as the block is there by default in new projects). Inside this block, the 
procedures run sequentially. 

The ‘do together’ block will run each statement in parallel with the next. 
This means the actions will happen at the same time, however it will wait 
until the last statement is finished before continuing. 



4 

If two procedures conflict with each other (e.g. two ‘move’ procedures on 
the same object), then unexpected behaviour may occur, including only one 
procedure running or neither running at all. 

15. With the ‘this.alien’ object selected, drag a ‘move’ procedure into the 

‘dotogether’ block. Set the direction to forward and the amount to ‘Custom 

DecimalNumber’. In the pop-up window, enter ‘7.0’ and press ‘OK’ 

16. In the object selector dropdown, change to ‘this.alienRobot’ and drag 

a‘turnToFace’ procedure into the ‘do together’ and set the target to be 

‘this.alien’. Set the duration to 0.25 by clicking the ‘add detail’ button and 

selecting duration. 

17. With the ‘this.alienRobot’ object selected, drag a ‘moveToward’ procedureinto 

the ‘do together’ block and set the target to be ‘this.alien’. Set the duration to 

‘Custom DecimalNumber’ and in the pop-up window, enter ‘11.0’ and press 

‘OK’. 

 

Figure 8: The code with the robot chasing the alien 

18. Now save the project and press ‘Run’ to see the animation so far. 

2 Adding Props and Camera Markers 

To make the scene more realistic, a building will be added as a background prop that 

the charaters chase around.To make the robot chasing the alien around the right side 

of the building visible, two different camera angles will be required. 

1. Click on the view switcher button (‘Setup Scene’). 

2. In the library palette, select ‘Prop classes’. This category contains a selection of 

inanimate objects that can be used as scenery. They also have the same 



5 

standard procedures as the character classes - ‘turn’, ‘move’, and ‘roll’ are all 

available. 

3. Select the ‘new MarsOutpostBunker()’ and drag it into the scene, placingit 

behind the alien and the alienRobot objects. In the dialog window that pops up, 

click ‘OK’ to select the default object name of ‘marsOutpostBunker’. 

 

Figure 9: Controlling the camera - (a) repositions the camera, (b) oreintates (pans) the 

camera, (c) rotates the camera on the X-axis 

4. Use the three sets of buttons to adjust the view of the camera so that 

the‘alienRobot’ and ‘alien’ objects are centered in the view and the top of the 

bunker is visible. 

 

Figure 10: An example camera position for the front perspective 

5. Once all three objects are in the frame, go to the properties panel on theright 

and expand the ‘Camera Markers’ section. 

6. Click ‘Add Camera Marker...’. In the window that pops up, change thename to 

‘bunkerFront’ and click ‘OK’. 



6 

A camera marker saves the current position and orientation of the camera 
so that it can be accessed programmatically from within the code. They 
can also be utilised from within the scene editor by selecting the marker in 
the ‘Camera Markers’ section of the properties panel and pressing the 
button below. This will reposition the camera to the saved position. 

 

After setting a camera marker, when moving around the scene, a floating 
camera icon will be visible indicating the saved position of the camera. 

 

7. Use the camera control buttons to reposition the camera and orientate 

ittowards the right side of the bunker, as shown in Figure 11. Dragging the 

cursor around the scene will also reposition the camera. 

 

Figure 11: An example camera position for the right-side perspective 

8. When the camera is positioned and oriented, click the ‘Add Camera 

Marker...’button in the properties panel. In the window, change the name to 

‘bunkerRight’ and click ‘OK’. 

9. Switch back to the code editor. 



7 

10. Right-click the ‘moveAndOrientToAGoodVantagePointOf’ block in thecode area 

and select ‘Delete’. 

11. In the object selector dropdown, select ‘this.camera’. 

12. Drag a ‘moveAndOrientTo’ procedure to the top of the code area abovethe 

‘turnToFace’ proecdure and select ‘this.bunkerFront’ as the target. This will 

make the scene start with the camera focussing on the front of the bunker, 

where the characters are initially. 

13. From the statements palette on the bottom of the screen, drag a ‘do together’ 

block to the end of the code (below the previous ‘do together’ block). 

14. Drag a ‘moveAndOrientTo’ procedure inside the new ‘do together’ blockand 

select ‘this.bunkerRight’ as the target. 

 

Figure 12: The code with two different camera angles utilised 

15. Press ‘Run’ to preview the scene and see the camera transitions. 

16. In the object selector dropdown, change to ‘this.alien’. 

17. Add a ‘turn’ block to the ‘do together’ block at the bottom of the codearea and 

set the direction to ‘LEFT’ and amount to 0.25. Click on ‘add detail’ and set the 

duration to 0.25 seconds. 

18. From the statements palette on the bottom of the screen, drag another 

‘dotogether’ block to the end of the code (below the previous ‘do together’ 

block). 



8 

19. With ‘this.alien’ selected, add a ‘move’ block to the new ‘do together’ blockat 

the bottom of the code area and set the direction to ‘FORWARD’ and amount 

to 1.0. Click on ‘add detail’ and set the duration to 0.5 seconds. 

20. In the object selector dropdown, select ‘this.alienRobot’ and drag a ‘turn’block 

into the ‘do together’ block. Set the direction to ‘LEFT’ and amount to 0.25 

rotations. Click ‘add detail’ and set the duration to 0.5 seconds. 

21. With ‘this.alienRobot’ selected, drag a ‘move’ block into the ‘do together’block. 

Set the direction to ‘RIGHT’ and amount to 1. Click ‘add detail’ and set the 

duration to 0.5 seconds. This block, combined with the ‘turn’ block above, will 

make the robot arc towards the alien as it turns the corner. 

22. From the statements palette on the bottom of the screen, drag another‘do 

together’ block to the end of the code (below the three previous ‘do together’ 

blocks). 

23. With ‘this.alien’ selected, add a ‘move’ block to the new ‘do together’ blockat 

the bottom of the code area and set the direction to ‘FORWARD’ and amount 

to ‘Custom DecimalNumber’. In the popup input, enter 22.0. Click on ‘add 

detail’ and set the duration to 2 seconds. 

24. In the object selector dropdown, select ‘this.alienRobot’ and drag a ‘move’block 

into the ‘do together’ block. Set the direction to ‘FORWARD’ and amount to 

‘Custom DecimalNumber’. In the popup input, enter 22.0. Click on ‘add detail’ 

and set the duration to 2 seconds. 

25. Now press ‘Run’ to preview the scene and see the alien and robot chasealong 

the right side of the building. 



9 

 

Figure 13: The code to animate the chase around two sides of the building 

3 Custom Procedures 

To make the scene look more realistic, the movement of the alien needs to be refined 

to make it look like it is walking, not gliding, along the surface. To do this, two new 

procedures are needed: one to animate the character stepping, and one to repeat 

this procedure for as many steps as are needed. 

3.1 Creating the ‘step’ procedure 

1. In the code editor, click the hexagonal class selector button in the top left.In the 

drop down that appears, select ‘Biped’ > ‘Add Biped Procedure’ and enter the 

name as ‘step’. 

 

Figure 14: This button opens a menu of all classes, procedures and functions 



10 

2. Click the ‘Add Parameter...’ at the top and in the pop-up window, setthe value 

type to ‘DecimalNumber’ and the name to ‘quarterDuration’, then press ‘OK’. 

This will be the duration for each statement and will eventually be equal to one 

quarter of the total duration of the procedure. 3. From the statements library, 

drag a ‘do together’ block to the code area. 

 

Figure 15: Click the left-side button on the block to change the ‘calling object’ 

4. From the procedures palette, add a ‘turn’ block into the ‘do together’block. Set 

the direction to ‘RIGHT’ and the amount to ‘Custom DecimalNumber’. In the 

pop-up, enter 0.125. Click on the ‘this’ button on the left side of the block and 

select ‘this’ > ‘this.getRightShoulder’ from the dropdown menu that appears. 

This will change which object calls the ‘turn’ method. Click ‘add detail’ and set 

the duration to the ‘quarterDuration’ parameter (the bottom option in the 

dropdown). 

Each of the characters is made of a number of a ‘joints’ that are actually 
separate objects that form a larger object (the character itself). 

These objects can be accessed and controlled through a number of 
functions such as ‘this.getHead’. Although these methods are visible from 
the functions tab of the methods palette, the easiest way to utilise them in 
Alice is to change the object that a method (such as ‘turn’) is to be called 
on (the ‘calling object’) after the block has been placed in the code area. 

5. Add another ‘turn’ block to the ‘do together’ block and set the direction 

to‘RIGHT’ and the amount to 0.125. Change the object calling the method to 

‘this.getLeftShoulder’. Click ‘add detail’ and set the duration to the 

‘quarterDuration’ parameter. 

6. Add another ‘turn’ block to the ‘do together’ block and set the directionto 

‘BACKWARD’ and the amount to ‘Custom DecimalNumber’. In the pop-up 

window, set the value to 0.08 and then change the object calling the method to 

‘this.getRightHip’. Click ‘add detail’ and set the duration to the 

‘quarterDuration’ parameter. 

7. Add another ‘turn’ block to the ‘do together’ block and set the directionto 

‘FORWARD’ and the amount to ‘Custom DecimalNumber’. In the pop-up 

window, set the value to 0.08 and then change the object calling the method to 



11 

‘this.getLeftHip’. Click ‘add detail’ and set the duration to the ‘quarterDuration’ 

parameter. 

8. Add another ‘turn’ block to the ‘do together’ block and set the directionto 

‘FORWARD’ and the amount to ‘Custom DecimalNumber’. In the pop-up 

window, set the value to 0.08 and then change the object calling the method to 

‘this.getRightKnee’. Click ‘add detail’ and set the duration to the 

‘quarterDuration’ parameter. 

9. Add a ‘move’ block to the ‘do together’ block and set the direction 

to‘FORWARD’ and the amount to 0.5 (keep the calling object as ‘this’). Click ‘add 

detail’ and set the duration to the ‘quarterDuration’ parameter. 

10. From the statements library, add another ‘do together’ block after theexisting 

one in the code area. 

11. Inside the new ‘do together’ block, add a ‘move’ block with the directionset to 

‘FORWARD’ and the amount to 0.5. Click ‘add detail’ and set the duration to the 

‘quarterDuration’ paramter. 

12. From the procedures palette, add a ‘straightenOutJoints’ block to thesecond 
‘do together’ block. Click ‘add detail’ and set the duration to ‘quarterDuration’. 

13. From the statements library, add another ‘do together’ block after theexisting 

ones in the code area. 

 

Figure 16: The code to animate the right leg when taking a step 

14. Add a ‘turn’ block to the bottom ‘do together’ block and set the directionto 

‘LEFT’ and the amount to 0.125. Change the object calling the method to 



12 

‘this.getLeftShoulder’. Click ‘add detail’ and set the duration to the 

‘quarterDuration’ parameter. 

15. Add another ‘turn’ block to the bottom ‘do together’ block and set the direction 

to ‘LEFT’ and the amount to 0.125. Change the object calling the method to 

‘this.getLeftShoulder’. Click ‘add detail’ and set the duration to the 

‘quarterDuration’ parameter. 

16. Add another ‘turn’ block to the bottom ‘do together’ block and set thedirection 

to ‘FORWARD’ and the amount to ‘Custom DecimalNumber’. In the pop-up 

window, set the value to 0.08 and then change the object calling the method to 

‘this.getRightHip’. Click ‘add detail’ and set the duration to the 

‘quarterDuration’ parameter. 

17. Add another ‘turn’ block to the bottom ‘do together’ block and set thedirection 

to ‘BACKWARD’ and the amount to ‘Custom DecimalNumber’. In the pop-up 

window, set the value to 0.08 and then change the object calling the method to 

‘this.getLeftHip’. Click ‘add detail’ and set the duration to the ‘quarterDuration’ 

parameter. 

18. Add another ‘turn’ block to the bottom ‘do together’ block and set thedirection 

to ‘FORWARD’ and the amount to ‘Custom DecimalNumber’. In the pop-up 

window, set the value to 0.08 and then change the object calling the method to 

‘this.getLeftKnee’. Click ‘add detail’ and set the duration to the 

‘quarterDuration’ parameter. 

19. Add a ‘move’ block to the bottom ‘do together’ block and set the directionto 

‘FORWARD’ and the amount to 0.5 (keep the calling object as ‘this’). Click ‘add 

detail’ and set the duration to the ‘quarterDuration’ parameter. 

20. Right-click on the second ‘do together’ block (containing only 2 blocks) and 

select ‘Copy to Clipboard’. (Note: The normal keyboard commands for copying 

and pasting are not available.) 

21. Click and drag from the clipboard in the top right corner to paste theblock at 

the bottom of the existing code. The final code for the ‘step’ procedure should 

look like Figure 17. 



13 

 

Figure 17: The complete code for the ‘step’ procedure 

3.2 Creating the ‘walk’ procedure 

1. Click the hexagonal class selector button and select ‘Biped’ > ‘Add 

BipedProcedure...’ and name the procedure ‘walk’. 

2. With the ‘walk’ tab selected, click ‘Add Parameter...’ and in the pop-

upwindow, set the value type to ‘WholeNumber’ and the name to ‘steps’, then 

press ‘OK’. This will be the number of steps to take. 

3. Click ‘Add Parameter...’ again and in the pop-up window, set the valuetype to 

‘DecimalNumber’ and the name to ‘stepDuration’, then press ‘OK’. This will be 

the duration per step. 



14 

4. From the statements library, drag a ‘count’ block into the code area andset the 

number to count up to ‘steps’. 

5. From the procedures palette, place a ‘step’ statement inside the ‘count’block. 

Set the duration to the ‘stepDuration’ parameter (the bottom element of the 

dropdown menu). 

 

Figure 18: Divide the ‘duration’ by four to get the ‘stepDuration’ 

6. Click on the duration parameter of the ‘step’ statement and select ‘Math’> 

‘stepDuration / ???’ > ‘Custom DecimalNumber’. In the pop-up window, enter 

4.0. This is required because the duration used in the ‘step’ block is one-fourth 

of the total actual duration of the ‘step’ block due to the four ‘do together’ 

blocks in the ‘step’ procedure. 

 

Figure 19: The complete code for the ‘walk’ procedure’ 

7. In the procedure tabs, select ‘myFirstMethod’. 

8. Right-click on the this.alien ‘move’ block inside the first ‘do together’ blockand 

delete it. 

9. With ‘this.alien’ selected in the object selector dropdown, drag a walkblock 

from the procedure palette into the first ‘do together block’ where the ‘move’ 

block was. Set the number of steps to 3 and the duration to ‘Custom 

DecimalNumber’. In the pop-up window, enter 0.14. 

10. Right-click on the this.alien ‘move’ block inside the last ‘do together’ blockand 

delete it. 

11. With ‘this.alien’ selected in the object selector dropdown, drag a walkblock 

from the procedure palette into the last ‘do together block’ where the ‘move’ 

block was. Set the number of steps to 11 and the duration to ‘Custom 

DecimalNumber’. In the pop-up window, enter 0.1. 



15 

 

Figure 20: The final code for the ‘myFirstMethod’ procedure 

12. Run the scene and the alien should now be running away from the 

robotaround the building. 

 


