
Falling Sand 

In this lab, you'll create a falling sand program. The software resembles a paint 

program, except that the user is painting particles into the world. The software 

simulates the physical behavior of those particles, which may move (perhaps falling 

like grains of sand), change, clone, disappear, interact, etc. 

 

Exercise 0: Getting Started 

Download FallingSand.zip. Compile and run SandLab.java. (This will 

run SandLab's main method, which constructs a new SandLab and calls its run method.) 

You should see a window pop up. On the left side is a black rectangular canvas which 

will soon be inhabited by particles. On the right side there is one button for each tool 

you will be able to paint with: Empty (for erasing) and Metal (for creating metal 

particles). You can't actually paint now, because you haven't written the code yet. 

Look in the SandLab.java file, and you'll see that a SandLab remembers two things: 

 grid - a 2-dimensional array of int values that represent the type of particle 

found at each location 

 display - the SandDisplay used to show the particles on the screen 

Do not add any more fields! 

Notice that we're using int values to represent particle types, with 0 

representing empty, 1 representing metal, and higher values representing the 

additional particle types you'll be adding. To avoid confusion, we never want to see 

these particle type numbers (0, 1, etc.) in our code! Instead, we've declared 

variables for each of these types. You'll see these listed near the top of SandLab.java. 

public static final int EMPTY = 0; 

public static final int METAL = 1; 

This lets us use meaningful variable names instead of confusing type numbers in our 

code. For example: 

if (type == METAL) 

These variables are marked final to indicate that they are constants. (Attempts to re-

assign to these variables will not compile.) By convention in Java, we use all-caps 

names for constants. (Traditionally, constants are also declared as public and static, 

http://nifty.stanford.edu/2017/feinberg-falling-sand/FallingSand.zip


so that we can access them from outside the file by writing SandLab.METAL, for 

example.) 

 

Exercise 1: Constructor 

The SandLab constructor already initializes the display field to refer to a 

new SandLabDisplay with appropriate dimensions and tool names. Insert code to 

initialize the grid field to refer to a 2-dimensional array of the same dimensions. (You 

won't be able to test this code yet.) 

 

Exercise 2: locationClicked 

The locationClicked method is called (by the run method) whenever the user clicks 

on some part of the canvas. The selected tool (empty, metal, etc.) is passed to the 

method. Store this value in the corresponding position of the grid array. (You won't be 

able to test this code yet.) 

 

Exercise 3: updateDisplay 

The updateDisplay method is called (by the run method) at regular intervals. Its job is 

to draw each particle (and empty space) found in grid onto the display, 

using SandDisplay's setColor method. Complete this method so that empty locations 

are shown in one color (probably black) and metal locations are shown in another 

color (probably gray). 

class java.awt.Color 

Color(int red, int green, int blue) // values range from 0 - 255 inclusive 

 

class SandDisplay 

void setColor(int row, int col, Color color) 

Test that you can now paint metal particles and erase them. 

 

Exercise 4: Sand 



Modify your program so that you can also paint with sand particles (probably in 

yellow). For now, these particles won't actually move. 

 

Exercise 5: step 

The step method is called (by the run method) at regular intervals. This method 

should choose a single random valid location. (Do not use a loop.) If that location 

contains a sand particle and the location below it is empty, the particle should move 

down one row. (Metal particles will never move.) This code should only modify the 

array. Do not set any colors in the display. Test that your sand particles fall now. 

Tip: If particles fall too quickly or too slowly, the speed can be adjusted by adjusting 

the slider in the display or by changing the dimensions passed to 

the SandLab constructor (from main). 

Note: Because the step method picks a single random particle to move (or act in some 

way) each time it is called, it is possible that some sand particles will move several 

times before others have the chance to move at all. In practice, the step method is 

called so rapidly that you are unlikely to notice this effect when you run the code. 

 

Exercise 6: Water 

Modify your program so that you can also paint with water particles, which move in 

one of three randomly chosen directions: down, left, or right. 

In the step method, when the randomly chosen location contains a water particle, pick 

one of three random directions. If the location in that randomly chosen direction is 

empty, the water particle moves there. (Look for ways to minimize duplicate code in 

your step method.) 

Test that the water behaves roughly like a liquid, taking the shape of a container. 

 

Exercise 7: Dropping Sand Into Water 

What happens now when you drop sand particles into water? Right now, sand is only 

allowed to move into empty spaces. Modify your code so that a sand particle can also 

move into a space containing a water particle (by trading places with the water 



particle). (Look for ways to minimize duplicate code in your step method.) Test that 

you can drop sand into water now (without destroying the water). 

 

Now implement other behaviors for additional credit. Get creative! 

 


