
For Statement

Python provides a more convenient way to express a definite loop. The for statement iterates over a
range of values. These values can be a numeric range, or, as we shall, elements of a data structure like a
string, list, or tuple. The above while loop can be rewritten

for n in range(1, 11):
 print(n)

The expression range(1, 11) creates an object known as an iterable that allows the for loop to assign
to the variable n the values 1, 2, ..., 10. During the first iteration of the loop, n’s value is 1 within the
block. In the loop’s second iteration, n has the value of 2. The general form of the range function call is

range(begin,end,step)

where:
• begin is the first value in the range; if omitted, the default value is 0
• end is one past the last value in the range; the end value may not be omitted
• step is the amount to increment or decrement; if the step parameter is omitted, it defaults to 1
(counts up by ones)

begin, end, and step must all be integer values; floating-point values and other types are not allowed.
The range function is very flexible. Consider the following loop that counts down from 21 to 3 by threes:

for n in range(21, 0, -3):
 print(n, '', end='')

It prints:

21 18 15 12 9 6 3

Thus range(21, 0, -3) represents the sequence 21,18,15,12,9,3. The expression range(1000) produces the
sequence 0,1,2,...,999.

Assignment
Write code that computes and prints the sum of all the positive integers less than 100.

